000 | 09553nam a2200841 i 4500 | ||
---|---|---|---|
001 | 7470995 | ||
003 | IEEE | ||
005 | 20230927112358.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 160607s2016 nju ob 001 eng d | ||
010 | _z 2015040505 (print) | ||
020 |
_a9781119073093 _qelectronic |
||
020 |
_z9781119073208 _qhardback |
||
024 | 7 |
_a10.1002/9781119073093 _2doi |
|
035 | _a(CaBNVSL)mat07470995 | ||
035 | _a(IDAMS)0b000064851714e6 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
082 | 0 | 0 | _a621.381/325 |
100 | 1 |
_aJarry, Pierre, _d1946- _eauthor. |
|
245 | 1 | 0 |
_aMicrowave amplifier and active circuit design using the real frequency technique / _cPierre Jarry and Jacques N. Beneat. |
264 | 1 |
_aHoboken : _bJohn Wiley & Sons, Inc., _c2016. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2016] |
|
300 | _a1 PDF (288 pages). | ||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a-- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg / Marquardt / More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- 2.10 Realizations 59. | |
505 | 8 | _a2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2 / 8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925 / 6.425 GHz Hybrid Amplifier 96 -- References 99 -- 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- 6.2 Multistage Power Amplifier Representation 152. | |
505 | 8 | _a6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg / Marquardt / More Optimization Algorithm 239 -- Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253. | |
505 | 8 | _aIndex 271. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 |
_a"The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"-- _cProvided by publisher. |
||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 06/07/2016. | ||
650 | 0 |
_aMicrowave amplifiers _xDesign and construction. |
|
650 | 0 |
_aElectric filters, Active _xDesign and construction. |
|
655 | 0 | _aElectronic books. | |
695 | _aActive filters | ||
695 | _aAdmittance | ||
695 | _aAntenna measurements | ||
695 | _aBroadband antennas | ||
695 | _aDistributed amplifiers | ||
695 | _aEqualizers | ||
695 | _aFrequency synthesizers | ||
695 | _aHorn antennas | ||
695 | _aImpedance | ||
695 | _aMicrowave amplifiers | ||
695 | _aMicrowave antennas | ||
695 | _aMicrowave circuits | ||
695 | _aMicrowave communication | ||
695 | _aMicrowave filters | ||
695 | _aOptical fiber amplifiers | ||
695 | _aOptimization | ||
695 | _aPower amplifiers | ||
695 | _aRadar antennas | ||
695 | _aRadar applications | ||
695 | _aReflection coefficient | ||
695 | _aResistors | ||
695 | _aScattering | ||
695 | _aScattering parameters | ||
695 | _aTransducers | ||
695 | _aTransistors | ||
695 | _aTransmission line matrix methods | ||
695 | _aTransmitting antennas | ||
700 | 1 |
_aBeneat, Jacques, _d1964- |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. |
|
710 | 2 |
_aWiley, _epublisher. |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7470995 |
999 |
_c40714 _d40714 |