000 | 07761nam a2201177 i 4500 | ||
---|---|---|---|
001 | 5361032 | ||
003 | IEEE | ||
005 | 20230927112349.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 091105t20152009njua ob 001 0 eng d | ||
020 |
_a9780470466971 _qelectronic |
||
020 |
_z9781118854150 _qprint |
||
020 |
_z9780470298886 _qpaper |
||
020 |
_z0470466979 _qelectronic |
||
020 |
_z9780470466964 _qelectronic |
||
020 |
_z0470466960 _qelectronic |
||
024 | 7 |
_a10.1002/9780470466971 _2doi |
|
035 | _a(CaBNVSL)mat05361032 | ||
035 | _a(IDAMS)0b0000648117884c | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
082 | 0 | 4 | _a621.31015196 |
100 | 1 |
_aZhu, Jizhong, _d1961- |
|
245 | 1 | 0 |
_aOptimization of power system operation / _cby Jizhong Zhu. |
264 | 1 |
_aPiscataway, New Jersey : _bWiley-IEEE, _c2009. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2009] |
|
300 |
_a1 PDF (xviii, 603 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 |
_aIEEE Press series on power engineering ; _v49 |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aPreface -- 1 Introduction -- 1.1 Conventional Methods -- 1.2 Intelligent Search Methods -- 1.3 Application of Fuzzy Set Theory -- 2 Power Flow Analysis -- 2.1 Mathematical Model of Power Flow -- 2.2 Newton-Raphson Method -- 2.3 Gauss-Seidel Method -- 2.4 P-Q decoupling Method -- 2.5 DC Power Flow -- 3 Sensitivity Calculation -- 3.1 Introduction -- 3.2 Loss Sensitivity Calculation -- 3.3 Calculation of Constrained Shift Sensitivity Factors -- 3.4 Perturbation Method for Sensitivity Analysis -- 3.5 Voltage Sensitivity Analysis -- 3.6 Real-Time Application of Sensitivity Factors -- 3.7 Simulation Results -- 3.8 Conclusion -- 4 Classic Economic Dispatch -- 4.1 Introduction -- 4.2 Input-Output Characteristic of Generator Units -- 4.3 Thermal System Economic Dispatch Neglecting Network Losses -- 4.4 Calculation of Incremental Power Losses -- 4.5 Thermal System Economic Dispatch with Network Losses -- 4.6 Hydrothermal System Economic Dispatch -- 4.7 Economic Dispatch by Gradient Method -- 4.8 Classic Economic Dispatch by Genetic Algorithm -- 4.9 Classic Economic Dispatch by Hopfi eld Neural Network -- 5 Security-Constrained Economic Dispatch -- 5.1 Introduction -- 5.2 Linear Programming Method -- 5.3 Quadratic Programming Method -- 5.4 Network Flow Programming Method -- 5.5 Nonlinear Convex Network Flow Programming Method -- 5.6 Two-Stage Economic Dispatch Approach -- 5.7 Security-Constrained ED by Genetic Algorithms -- 6 Multiarea System Economic Dispatch -- 6.1 Introduction -- 6.2 Economy of Multiarea Interconnection -- 6.3 Wheeling -- 6.4 Multiarea Wheeling -- 6.5 MAED Solved by Nonlinear Convex Network Flow Programming -- 6.6 Nonlinear Optimization Neural Network Approach -- 6.7 Total Transfer Capability Computation in Multiareas -- 7 Unit Commitment -- 7.1 Introduction -- 7.2 Priority Method -- 7.3 Dynamic Programming Method -- 7.4 Lagrange Relaxation Method -- 7.5 Evolutionary Programming-Based Tabu Search Method -- 7.6 Particle Swarm Optimization for Unit Commitment. | |
505 | 8 | _a7.7 Analytic Hierarchy Process -- 8 Optimal Power Flow -- 8.1 Introduction -- 8.2 Newton Method -- 8.3 Gradient Method -- 8.4 Linear Programming OPF -- 8.5 Modifi ed Interior Point OPF -- 8.6 OPF with Phase Shifter -- 8.7 Multiple-Objectives OPF -- 8.8 Particle Swarm Optimization for OPF -- 9 Steady-State Security Regions -- 9.1 Introduction -- 9.2 Security Corridors -- 9.3 Traditional Expansion Method -- 9.4 Enhanced Expansion Method -- 9.5 Fuzzy Set and Linear Programming -- 10 Reactive Power Optimization -- 10.1 Introduction -- 10.2 Classic Method for Reactive Power Dispatch -- 10.3 Linear Programming Method of VAR Optimization -- 10.4 Interior Point Method for VAR Optimization Problem -- 10.5 NLONN Approach -- 10.6 VAR Optimization by Evolutionary Algorithm -- 10.7 VAR Optimization by Particle Swarm Optimization Algorithm -- 10.8 Reactive Power Pricing Calculation -- 11 Optimal Load Shedding -- 11.1 Introduction -- 11.2 Conventional Load Shedding -- 11.3 Intelligent Load Shedding -- 11.4 Formulation of Optimal Load Shedding -- 11.5 Optimal Load Shedding with Network Constraints -- 11.6 Optimal Load Shedding without Network Constraints -- 11.7 Distributed Interruptible Load Shedding -- 11.8 Undervoltage Load Shedding -- 11.9 Congestion Management -- 12 Optimal Reconfi guration of Electrical Distribution Network -- 12.1 Introduction -- 12.2 Mathematical Model of DNRC -- 12.3 Heuristic Methods -- 12.4 Rule-Based Comprehensive Approach -- 12.5 Mixed-Integer Linear Programming Approach -- 12.6 Application of GA to DNRC -- 12.7 Multiobjective Evolution Programming to DNRC -- 12.8 Genetic Algorithm Based on Matroid Theory -- 13 Uncertainty Analysis in Power Systems -- 13.1 Introduction -- 13.2 Defi nition of Uncertainty -- 13.3 Uncertainty Load Analysis -- 13.4 Uncertainty Power Flow Analysis -- 13.5 Economic Dispatch with Uncertainties -- 13.6 Hydrothermal System Operation with Uncertainty -- 13.7 Unit Commitment with Uncertainties -- 13.8 VAR Optimization with Uncertain Reactive Load. | |
505 | 8 | _a13.9 Probabilistic Optimal Power Flow -- 13.10 Comparison of Deterministic and Probabilistic Methods -- Author Biography -- Index. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 12/21/2015. | ||
650 | 0 |
_aElectric power systems _xMathematical models. |
|
650 | 0 | _aMathematical optimization. | |
655 | 0 | _aElectronic books. | |
695 | _aIndexes | ||
695 | _aInterconnected systems | ||
695 | _aJoining processes | ||
695 | _aLinear programming | ||
695 | _aLoad modeling | ||
695 | _aMarketing and sales | ||
695 | _aMathematical model | ||
695 | _aNewton method | ||
695 | _aNonlinear equations | ||
695 | _aOptimization | ||
695 | _aPlanning | ||
695 | _aPower markets | ||
695 | _aPower system stability | ||
695 | _aPower systems | ||
695 | _aPower transmission lines | ||
695 | _aProbabilistic logic | ||
695 | _aProbability density function | ||
695 | _aProduction | ||
695 | _aProgramming | ||
695 | _aPropagation losses | ||
695 | _aReactive power | ||
695 | _aResource management | ||
695 | _aSchedules | ||
695 | _aSecurity | ||
695 | _aSensitivity | ||
695 | _aShape | ||
695 | _aSteady-state | ||
695 | _aSwitches | ||
695 | _aTemperature | ||
695 | _aTime frequency analysis | ||
695 | _aTrajectory | ||
695 | _aTurbines | ||
695 | _aUncertainty | ||
695 | _aAdmittance | ||
695 | _aArtificial intelligence | ||
695 | _aArtificial neural networks | ||
695 | _aBiographies | ||
695 | _aBiological system modeling | ||
695 | _aBoilers | ||
695 | _aCompanies | ||
695 | _aCost function | ||
695 | _aDynamic programming | ||
695 | _aEconomics | ||
695 | _aElectricity | ||
695 | _aEllipsoids | ||
695 | _aEquations | ||
695 | _aFrequency control | ||
695 | _aFuels | ||
695 | _aGenerators | ||
695 | _aGenetic algorithms | ||
695 | _aHeuristic algorithms | ||
695 | _aIP networks | ||
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. |
|
710 | 2 |
_aJohn Wiley & Sons, _epublisher. |
|
776 | 0 | 8 |
_iPrint version: _z9781118854150 |
830 | 0 |
_aIEEE Press series on power engineering ; _v49 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361032 |
999 |
_c40298 _d40298 |