000 03392n a2200457#a 4500
001 36914
003 P5A
005 20221213140549.0
007 cr cuuuuuauuuu
008 160617s2016 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _acs
100 1 _aSchmidt, Mark
_u(University of British Columbia, CA)
_97610
245 1 0 _aStochastic Convex Optimization Methods In Machine Learning/
_cMark Schmidt.
246 1 _aMinicurso: Stochastic Convex Optimization Methods In Machine Learning
260 _aRio de Janeiro:
_bIMPA,
_c2016.
300 _aMini Course - 8 classes
500 _aMini Course 3 We first review classic algorithms and complexity results for stochastic methods for convex optimization, and then turn our attention to the wide variety of exponentially-convergent algorithms that have been developed in the last four years. Topics will include finite-time convergence rates of classic stochastic gradient methods, stochastic average/variance-reduced gradient methods, primal-dual methods, proximal operators, acceleration, alternating minimization, non-uniform sampling, and a discussion of parallelization and non-convex problems. Applications in the field of machine learning will emphasized, but the principles we cover in this course are applicable to many fields .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
711 2 _aSVAN 2016
_c(IMPA, Rio de Janeiro, Brazil)
856 4 _zPRESENTATION 1
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L1.pdf
856 4 _zPRESENTATION 2
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L2.pdf
856 4 _zPRESENTATION 3
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L3.pdf
856 4 _zPRESENTATION 4
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L4.pdf
856 4 _zPRESENTATION 5A
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L5a.pdf
856 4 _zPRESENTATION 5B
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L5b.pdf
856 4 _zPRESENTATION 6
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L6.pdf
856 4 _zPRESENTATION 7
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L7.pdf
856 4 _zPRESENTATION 8
_uhttp://www.cs.ubc.ca/~schmidtm/SVAN16/L8.pdf
856 4 _zCLASS 1 (VIDEO)
_uhttps://www.youtube.com/watch?v=p4EnVHSml4U&index=5&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-
856 4 _zCLASS 2 (VIDEO)
_uhttps://www.youtube.com/watch?v=-SpWLPnlVWg&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-&index=6
856 4 _zCLASS 3 (VIDEO)
_uhttps://www.youtube.com/watch?v=XdY87jyeQ7Q&index=7&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-
856 4 _zCLASS 4 (VIDEO)
_uhttps://www.youtube.com/watch?v=zzIzEcbAb8U&index=8&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-
856 4 _zCLASS 5 (VIDEO)
_uhttps://www.youtube.com/watch?v=7cyVxxx8rZA&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-&index=9
856 4 _zCLASS 6 (VIDEO)
_uhttps://www.youtube.com/watch?v=il3rDjaMWfs&index=10&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-
856 4 _zCLASS 7 (VIDEO)
_uhttps://www.youtube.com/watch?v=GThR7vpUTTY&index=11&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-
856 4 _zCLASS 8 (VIDEO)
_uhttps://www.youtube.com/watch?v=TpnKxfUCeAE&list=PLo4jXE-LdDTTR8sH8rJindqSX9IeobHE-&index=12
942 _2ddc
_cBK
999 _aSTOCHASTIC Convex Optimization Methods In Machine Learning. Mark Schmidt. Rio de Janeiro: IMPA, 2016. Mini Course - 8 classes. Disponível em: <http://www.cs.ubc.ca/~schmidtm/SVAN16/L1.pdf>
_c35704
_d35704