000 01496n a2200265#a 4500
001 36076
003 P5A
005 20221213140535.0
007 cr cuuuuuauuuu
008 150203s2015 bl por d
035 _aocm51338542
040 _aP5A
_cP5A
090 _acs
100 1 _aHauswirth, L.
_u(University Paris-Est Marne-la-Vallee)
_96764
245 1 0 _aSpectral curves, harmonic maps and minimal surfaces.
260 _aRio de Janeiro:
_bIMPA,
_c2015.
300 _avideo online
505 2 _aN. Hitchin introduced spectral curves representation to describe harmonic map from a 2- torus into S(2) or S(3). Considering inifinite covering annuli of tori, we will explain the space of periodic harmonic maps induced by deformations of spectral curves and how this describe the geometry of properly embedded minimal surfaces in S(2)xR .
650 0 4 _aMatematica.
_2larpcal
_919899
697 _aCongressos e Seminários.
_923755
711 2 _aHyperbolic Geometry and Minimal Surfaces
_d(2015:
_cIMPA, Rio de Janeiro, Brazil)
_96755
856 4 _zVIDEO
_uhttps://www.youtube.com/watch?v=u_wHKwB5ZdA&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=21
856 4 _zRESUMOS
_uhttps://impa.br/wp-content/uploads/2016/12/abstracts.pdf
942 _2ddc
_cBK
999 _aSPECTRAL curves, harmonic maps and minimal surfaces. Rio de Janeiro: IMPA, 2015. video online. Disponível em: <https://www.youtube.com/watch?v=u_wHKwB5ZdA&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=21>. Acesso em: 3 fev. 2015.
_c34932
_d34932