000 | 01496n a2200265#a 4500 | ||
---|---|---|---|
001 | 36076 | ||
003 | P5A | ||
005 | 20221213140535.0 | ||
007 | cr cuuuuuauuuu | ||
008 | 150203s2015 bl por d | ||
035 | _aocm51338542 | ||
040 |
_aP5A _cP5A |
||
090 | _acs | ||
100 | 1 |
_aHauswirth, L. _u(University Paris-Est Marne-la-Vallee) _96764 |
|
245 | 1 | 0 | _aSpectral curves, harmonic maps and minimal surfaces. |
260 |
_aRio de Janeiro: _bIMPA, _c2015. |
||
300 | _avideo online | ||
505 | 2 | _aN. Hitchin introduced spectral curves representation to describe harmonic map from a 2- torus into S(2) or S(3). Considering inifinite covering annuli of tori, we will explain the space of periodic harmonic maps induced by deformations of spectral curves and how this describe the geometry of properly embedded minimal surfaces in S(2)xR . | |
650 | 0 | 4 |
_aMatematica. _2larpcal _919899 |
697 |
_aCongressos e Seminários. _923755 |
||
711 | 2 |
_aHyperbolic Geometry and Minimal Surfaces _d(2015: _cIMPA, Rio de Janeiro, Brazil) _96755 |
|
856 | 4 |
_zVIDEO _uhttps://www.youtube.com/watch?v=u_wHKwB5ZdA&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=21 |
|
856 | 4 |
_zRESUMOS _uhttps://impa.br/wp-content/uploads/2016/12/abstracts.pdf |
|
942 |
_2ddc _cBK |
||
999 |
_aSPECTRAL curves, harmonic maps and minimal surfaces. Rio de Janeiro: IMPA, 2015. video online. DisponÃvel em: <https://www.youtube.com/watch?v=u_wHKwB5ZdA&list=PLo4jXE-LdDTSse0dM2KDQFGXqPMkAQNaf&index=21>. Acesso em: 3 fev. 2015. _c34932 _d34932 |