Amazon cover image
Image from Amazon.com
Image from OpenLibrary
See Baker & Taylor
Image from Baker & Taylor

Power management integrated chip design / Ke-Horng Chen.

By: Contributor(s): Material type: TextTextPublisher: Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2016Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2016]Description: 1 PDF (520 pages)Content type:
  • text
Media type:
  • electronic
Carrier type:
  • online resource
ISBN:
  • 9781118896846
Subject(s): Genre/Form: DDC classification:
  • 621.39/5
Online resources: Also available in print.
Contents:
-- About the Author xii -- Preface xiii -- Acknowledgments xv -- 1 Introduction 1 -- 1.1 Moore's Law 1 -- 1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter 1 -- 1.2.1 MOSFET Structure 1 -- 1.2.2 Scaling Effects 7 -- 1.2.3 Leakage Power Dissipation 9 -- 1.3 Challenge of Power Management IC in Advanced Technological Products 14 -- 1.3.1 Multi-Vth Technology 14 -- 1.3.2 Performance Boosters 15 -- 1.3.3 Layout-Dependent Proximity Effects 19 -- 1.3.4 Impacts on Circuit Design 20 -- 1.4 Basic Definition Principles in Power Management Module 22 -- 1.4.1 Load Regulation 22 -- 1.4.2 Transient Voltage Variations 23 -- 1.4.3 Conduction Loss and Switching Loss 24 -- 1.4.4 Power Conversion Efficiency 25 -- References 25 -- 2 Design of Low Dropout (LDO) Regulators 28 -- 2.1 Basic LDO Architecture 29 -- 2.1.1 Types of Pass Device 31 -- 2.2 Compensation Skills 34 -- 2.2.1 Pole Distribution 34 -- 2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero 40 -- 2.3 Design Consideration for LDO Regulators 42 -- 2.3.1 Dropout Voltage 43 -- 2.3.2 Efficiency 44 -- 2.3.3 Line/Load Regulation 45 -- 2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change 46 -- 2.4 Analog-LDO Regulators 50 -- 2.4.1 Characteristics of Dominant-Pole Compensation 50 -- 2.4.2 Characteristics of C-free Structure 56 -- 2.4.3 Design of Low-Voltage C-free LDO Regulator 62 -- 2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator 66 -- 2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA) 75 -- 2.5 Design Guidelines for LDO Regulators 79 -- 2.5.1 Simulation Tips and Analyses 81 -- 2.5.2 Technique for Breaking the Loop in AC Analysis Simulation 82 -- 2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation 85 -- 2.6 Digital-LDO (D-LDO) Design 93 -- 2.6.1 Basic D-LDO 94 -- 2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control 96.
2.6.3 Dynamic Voltage Scaling (DVS) 100 -- 2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique 110 -- 2.7.1 ADVS Technique 110 -- 2.7.2 Switchable D/A-LDO Regulator 113 -- References 120 -- 3 Design of Switching Power Regulators 122 -- 3.1 Basic Concept 122 -- 3.2 Overview of the Control Method and Operation Principle 125 -- 3.3 Small Signal Modeling and Compensation Techniques in SWR 131 -- 3.3.1 Small Signal Modeling of Voltage-Mode SWR 131 -- 3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR 135 -- 3.3.3 Small Signal Modeling of Current-Mode SWR 150 -- References 169 -- 4 Ripple-Based Control Technique Part I 170 -- 4.1 Basic Topology of Ripple-Based Control 171 -- 4.1.1 Hysteretic Control 173 -- 4.1.2 On-Time Control 176 -- 4.1.3 Off-Time Control 179 -- 4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control 182 -- 4.1.5 Summary of Topology of Ripple-Based Control 183 -- 4.2 Stability Criterion of On-Time Controlled Buck Converter 185 -- 4.2.1 Derivation of the Stability Criterion 185 -- 4.2.2 Selection of Output Capacitor 197 -- 4.3 Design Techniques When Using MLCC with a Small Value of RESR 201 -- 4.3.1 Use of Additional Ramp Signal 202 -- 4.3.2 Use of Additional Current Feedback Path 204 -- 4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path 254 -- 4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR 256 -- 4.3.5 Experimental Result of Ripple-Reshaped Function 262 -- References 269 -- 5 Ripple-Based Control Technique Part II 270 -- 5.1 Design Techniques for Enhancing Voltage Regulation Performance 270 -- 5.1.1 Accuracy in DC Voltage Regulation 270 -- 5.1.2 V2 Structure for Ripple-Based Control 271 -- 5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path 275 -- 5.1.4 Compensator for V2 Structure with Small RESR 277 -- 5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used 283.
5.1.6 Robust Ripple Regulator (R3) 294 -- 5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference 297 -- 5.2.1 Improvement of Noise Immunity of Feedback Signal 298 -- 5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal 299 -- 5.2.3 Technique of PLL Modulator 302 -- 5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad 304 -- 5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW 313 -- 5.3 Optimum On-Time Controller for Pseudo-Constant fSW 321 -- 5.3.1 Algorithm for Optimum On-Time Control 322 -- 5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq 323 -- 5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY 331 -- 5.3.4 Frequency Clamper 333 -- 5.3.5 Comparison of Different On-Time Controllers 333 -- 5.3.6 Simulation Result of Optimum On-Time Controller 335 -- 5.3.7 Experimental Result of Optimum On-Time Controller 335 -- References 343 -- 6 Single-Inductor Multiple-Output (SIMO) Converter 345 -- 6.1 Basic Topology of SIMO Converters 345 -- 6.1.1 Architecture 345 -- 6.1.2 Cross Regulation 347 -- 6.2 Applications of SIMO Converters 348 -- 6.2.1 System-on-Chip 348 -- 6.2.2 Portable Electronics Systems 350 -- 6.3 Design Guidelines of SIMO Converters 351 -- 6.3.1 Energy Delivery Paths 351 -- 6.3.2 Classifications of Control Methods 359 -- 6.3.3 Design Goals 363 -- 6.4 SIMO Converter Techniques for Soc 364 -- 6.4.1 Superposition Theorem in Inductor Current Control 364 -- 6.4.2 Dual-Mode Energy Delivery Methodology 366 -- 6.4.3 Energy-Mode Transition 367 -- 6.4.4 Automatic Energy Bypass 371 -- 6.4.5 Elimination of Transient Cross Regulation 372 -- 6.4.6 Circuit Implementations 376 -- 6.4.7 Experimental Results 387 -- 6.5 SIMO Converter Techniques for Tablets 397 -- 6.5.1 Output Independent Gate Drive Control in SIMO Converter 397 -- 6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter 405 -- 6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter 415.
6.5.4 Circuit Implementations 420 -- 6.5.5 Experimental Results 427 -- References 441 -- 7 Switching-Based Battery Charger 443 -- 7.1 Introduction 443 -- 7.1.1 Pure Charge State 447 -- 7.1.2 Direct Supply State 448 -- 7.1.3 Plug Off State 448 -- 7.1.4 CAS State 448 -- 7.2 Small Signal Analysis of Switching-Based Battery Charger 449 -- 7.3 Closed-Loop Equivalent Model 454 -- 7.4 Simulation with PSIM 461 -- 7.5 Turbo-boost Charger 465 -- 7.6 Influence of Built-In Resistance in the Charger System 470 -- 7.7 Design Example: Continuous Built-In Resistance Detection 472 -- 7.7.1 CBIRD Operation 473 -- 7.7.2 CBIRD Circuit Implementation 476 -- 7.7.3 Experimental Results 480 -- References 482 -- 8 Energy-Harvesting Systems 483 -- 8.1 Introduction to Energy-Harvesting Systems 483 -- 8.2 Energy-Harvesting Sources 486 -- 8.2.1 Vibration Electromagnetic Transducers 487 -- 8.2.2 Piezoelectric Generator 490 -- 8.2.3 Electrostatic Energy Generator 491 -- 8.2.4 Wind-Powered Energy Generator 492 -- 8.2.5 Thermoelectric Generator 494 -- 8.2.6 Solar Cells 496 -- 8.2.7 Magnetic Coil 498 -- 8.2.8 RF/Wireless 501 -- 8.3 Energy-Harvesting Circuits 502 -- 8.3.1 Basic Concept of Energy-Harvesting Circuits 502 -- 8.3.2 AC Source Energy-Harvesting Circuits 505 -- 8.3.3 DC-Source Energy-Harvesting Circuits 511 -- 8.4 Maximum Power Point Tracking 514 -- 8.4.1 Basic Concept of Maximum Power Point Tracking 514 -- 8.4.2 Impedance Matching 515 -- 8.4.3 Resistor Emulation 516 -- 8.4.4 MPPT Method 518 -- References 523 -- Index 527.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

-- About the Author xii -- Preface xiii -- Acknowledgments xv -- 1 Introduction 1 -- 1.1 Moore's Law 1 -- 1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter 1 -- 1.2.1 MOSFET Structure 1 -- 1.2.2 Scaling Effects 7 -- 1.2.3 Leakage Power Dissipation 9 -- 1.3 Challenge of Power Management IC in Advanced Technological Products 14 -- 1.3.1 Multi-Vth Technology 14 -- 1.3.2 Performance Boosters 15 -- 1.3.3 Layout-Dependent Proximity Effects 19 -- 1.3.4 Impacts on Circuit Design 20 -- 1.4 Basic Definition Principles in Power Management Module 22 -- 1.4.1 Load Regulation 22 -- 1.4.2 Transient Voltage Variations 23 -- 1.4.3 Conduction Loss and Switching Loss 24 -- 1.4.4 Power Conversion Efficiency 25 -- References 25 -- 2 Design of Low Dropout (LDO) Regulators 28 -- 2.1 Basic LDO Architecture 29 -- 2.1.1 Types of Pass Device 31 -- 2.2 Compensation Skills 34 -- 2.2.1 Pole Distribution 34 -- 2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero 40 -- 2.3 Design Consideration for LDO Regulators 42 -- 2.3.1 Dropout Voltage 43 -- 2.3.2 Efficiency 44 -- 2.3.3 Line/Load Regulation 45 -- 2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change 46 -- 2.4 Analog-LDO Regulators 50 -- 2.4.1 Characteristics of Dominant-Pole Compensation 50 -- 2.4.2 Characteristics of C-free Structure 56 -- 2.4.3 Design of Low-Voltage C-free LDO Regulator 62 -- 2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator 66 -- 2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA) 75 -- 2.5 Design Guidelines for LDO Regulators 79 -- 2.5.1 Simulation Tips and Analyses 81 -- 2.5.2 Technique for Breaking the Loop in AC Analysis Simulation 82 -- 2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation 85 -- 2.6 Digital-LDO (D-LDO) Design 93 -- 2.6.1 Basic D-LDO 94 -- 2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control 96.

2.6.3 Dynamic Voltage Scaling (DVS) 100 -- 2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique 110 -- 2.7.1 ADVS Technique 110 -- 2.7.2 Switchable D/A-LDO Regulator 113 -- References 120 -- 3 Design of Switching Power Regulators 122 -- 3.1 Basic Concept 122 -- 3.2 Overview of the Control Method and Operation Principle 125 -- 3.3 Small Signal Modeling and Compensation Techniques in SWR 131 -- 3.3.1 Small Signal Modeling of Voltage-Mode SWR 131 -- 3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR 135 -- 3.3.3 Small Signal Modeling of Current-Mode SWR 150 -- References 169 -- 4 Ripple-Based Control Technique Part I 170 -- 4.1 Basic Topology of Ripple-Based Control 171 -- 4.1.1 Hysteretic Control 173 -- 4.1.2 On-Time Control 176 -- 4.1.3 Off-Time Control 179 -- 4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control 182 -- 4.1.5 Summary of Topology of Ripple-Based Control 183 -- 4.2 Stability Criterion of On-Time Controlled Buck Converter 185 -- 4.2.1 Derivation of the Stability Criterion 185 -- 4.2.2 Selection of Output Capacitor 197 -- 4.3 Design Techniques When Using MLCC with a Small Value of RESR 201 -- 4.3.1 Use of Additional Ramp Signal 202 -- 4.3.2 Use of Additional Current Feedback Path 204 -- 4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path 254 -- 4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR 256 -- 4.3.5 Experimental Result of Ripple-Reshaped Function 262 -- References 269 -- 5 Ripple-Based Control Technique Part II 270 -- 5.1 Design Techniques for Enhancing Voltage Regulation Performance 270 -- 5.1.1 Accuracy in DC Voltage Regulation 270 -- 5.1.2 V2 Structure for Ripple-Based Control 271 -- 5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path 275 -- 5.1.4 Compensator for V2 Structure with Small RESR 277 -- 5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used 283.

5.1.6 Robust Ripple Regulator (R3) 294 -- 5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference 297 -- 5.2.1 Improvement of Noise Immunity of Feedback Signal 298 -- 5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal 299 -- 5.2.3 Technique of PLL Modulator 302 -- 5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad 304 -- 5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW 313 -- 5.3 Optimum On-Time Controller for Pseudo-Constant fSW 321 -- 5.3.1 Algorithm for Optimum On-Time Control 322 -- 5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq 323 -- 5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY 331 -- 5.3.4 Frequency Clamper 333 -- 5.3.5 Comparison of Different On-Time Controllers 333 -- 5.3.6 Simulation Result of Optimum On-Time Controller 335 -- 5.3.7 Experimental Result of Optimum On-Time Controller 335 -- References 343 -- 6 Single-Inductor Multiple-Output (SIMO) Converter 345 -- 6.1 Basic Topology of SIMO Converters 345 -- 6.1.1 Architecture 345 -- 6.1.2 Cross Regulation 347 -- 6.2 Applications of SIMO Converters 348 -- 6.2.1 System-on-Chip 348 -- 6.2.2 Portable Electronics Systems 350 -- 6.3 Design Guidelines of SIMO Converters 351 -- 6.3.1 Energy Delivery Paths 351 -- 6.3.2 Classifications of Control Methods 359 -- 6.3.3 Design Goals 363 -- 6.4 SIMO Converter Techniques for Soc 364 -- 6.4.1 Superposition Theorem in Inductor Current Control 364 -- 6.4.2 Dual-Mode Energy Delivery Methodology 366 -- 6.4.3 Energy-Mode Transition 367 -- 6.4.4 Automatic Energy Bypass 371 -- 6.4.5 Elimination of Transient Cross Regulation 372 -- 6.4.6 Circuit Implementations 376 -- 6.4.7 Experimental Results 387 -- 6.5 SIMO Converter Techniques for Tablets 397 -- 6.5.1 Output Independent Gate Drive Control in SIMO Converter 397 -- 6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter 405 -- 6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter 415.

6.5.4 Circuit Implementations 420 -- 6.5.5 Experimental Results 427 -- References 441 -- 7 Switching-Based Battery Charger 443 -- 7.1 Introduction 443 -- 7.1.1 Pure Charge State 447 -- 7.1.2 Direct Supply State 448 -- 7.1.3 Plug Off State 448 -- 7.1.4 CAS State 448 -- 7.2 Small Signal Analysis of Switching-Based Battery Charger 449 -- 7.3 Closed-Loop Equivalent Model 454 -- 7.4 Simulation with PSIM 461 -- 7.5 Turbo-boost Charger 465 -- 7.6 Influence of Built-In Resistance in the Charger System 470 -- 7.7 Design Example: Continuous Built-In Resistance Detection 472 -- 7.7.1 CBIRD Operation 473 -- 7.7.2 CBIRD Circuit Implementation 476 -- 7.7.3 Experimental Results 480 -- References 482 -- 8 Energy-Harvesting Systems 483 -- 8.1 Introduction to Energy-Harvesting Systems 483 -- 8.2 Energy-Harvesting Sources 486 -- 8.2.1 Vibration Electromagnetic Transducers 487 -- 8.2.2 Piezoelectric Generator 490 -- 8.2.3 Electrostatic Energy Generator 491 -- 8.2.4 Wind-Powered Energy Generator 492 -- 8.2.5 Thermoelectric Generator 494 -- 8.2.6 Solar Cells 496 -- 8.2.7 Magnetic Coil 498 -- 8.2.8 RF/Wireless 501 -- 8.3 Energy-Harvesting Circuits 502 -- 8.3.1 Basic Concept of Energy-Harvesting Circuits 502 -- 8.3.2 AC Source Energy-Harvesting Circuits 505 -- 8.3.3 DC-Source Energy-Harvesting Circuits 511 -- 8.4 Maximum Power Point Tracking 514 -- 8.4.1 Basic Concept of Maximum Power Point Tracking 514 -- 8.4.2 Impedance Matching 515 -- 8.4.3 Resistor Emulation 516 -- 8.4.4 MPPT Method 518 -- References 523 -- Index 527.

Restricted to subscribers or individual electronic text purchasers.

Also available in print.

Mode of access: World Wide Web

Description based on PDF viewed 07/04/2016.

There are no comments on this title.

to post a comment.
© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha