Amazon cover image
Image from Amazon.com
Image from OpenLibrary
See Baker & Taylor
Image from Baker & Taylor

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics [electronic resource]/ by Ulrich Kohlenbach.

By: Contributor(s): Series: Springer Monographs in MathematicsPublication details: Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.Description: XX, 536 p. digitalISBN:
  • 9783540775331
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 510
Online resources:
Contents:
Preface -- Introduction -- Unwinding of proofs (`Proof Mining') -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel's functional (`Dialectica') interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman-Dragalin A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments -- References -- Index .
In: Springer eBooksSummary: Ulrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. &nbsp ;
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction -- Unwinding of proofs (`Proof Mining') -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel's functional (`Dialectica') interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman-Dragalin A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments -- References -- Index .

Ulrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. &nbsp ;

There are no comments on this title.

to post a comment.
© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha