Image from OpenLibrary

Factorization Homology.

By: Contributor(s): Publication details: Rio de Janeiro: IMPA, 2016.Description: video onlineSubject(s): Online resources:
Incomplete contents:
There is a relationship between higher algebra/category theory and differential topology. Evidence of this is abundant. For instance, Khovanov homology can be regarded as a knot invariant obtained from a suitable representation of a quantum group, the collection of which forms a braided monoidal category. Also, Turaev-Viro 3-manifold invariants are constructed from a suitably finite monoidal category. In the other direction, deformations of a point in an En-scheme over characteristic zero, such as a variety over the complex numbers, are indexed by framed n-manifolds. Hochschild (co)homology is an instance of this for n=1. This series will dwell on the foundations of this relationship. The talks will be framed by one main result, and a couple formal applications thereof. The main construction is factorization homology with coefficients in higher (enriched) categories. The body of the talks will focus on precise definitions, emphasizing the essential aspects that facilitate the coherent cancellations which support the main result.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

There is a relationship between higher algebra/category theory and differential topology. Evidence of this is abundant. For instance, Khovanov homology can be regarded as a knot invariant obtained from a suitable representation of a quantum group, the collection of which forms a braided monoidal category. Also, Turaev-Viro 3-manifold invariants are constructed from a suitably finite monoidal category. In the other direction, deformations of a point in an En-scheme over characteristic zero, such as a variety over the complex numbers, are indexed by framed n-manifolds. Hochschild (co)homology is an instance of this for n=1. This series will dwell on the foundations of this relationship. The talks will be framed by one main result, and a couple formal applications thereof. The main construction is factorization homology with coefficients in higher (enriched) categories. The body of the talks will focus on precise definitions, emphasizing the essential aspects that facilitate the coherent cancellations which support the main result.

DAY 1 - TALK 1 NOT RECORDED

There are no comments on this title.

to post a comment.
© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha