Image from OpenLibrary

Blowup as a driving mechanism of turbulence in shell models.

By: Contributor(s): Publication details: Rio de Janeiro: IMPA, 2014.Description: video onlineSubject(s): Online resources:
Partial contents:
Since Kolmogorov proposed his phenomenological theory of hydrodynamic turbulence in 1941, the description of mechanism leading to the energy cascade and anomalous scaling remains an open problem in fluid mechanics. Soon after, in 1949 Onsager noticed that the scaling properties in inertial range imply non-differentiability of the velocity field in the limit of vanishing viscosity. This observation suggests that the turbulence mechanism may be related to a finite-time singularity (blowup) of incompressible Euler equations. However, the existence of such blowup is still an open problem too. In this talk, we show that the blowup indeed represents the driving mechanism of inertial range for a simplified (shell) model of turbulence. Here, blowups generate coherent structures (instantons), which travel through the inertial range in finite time and are described by universal self-similar statistics. The anomaly (deviation of scaling exponents of velocity moments from the Kolmogorov theory) is related analytically to the process of instanton creation using the large deviation principle. The results are confirmed by numerical simulations .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The Fourth Workshop on Fluids and PDE was held at the National Institute of Pure and Applied Mathematics (IMPA) in Rio de Janeiro, Brazil, from Monday 26 May to Friday 30 May 2014. This workshop is held every two to three years in Brazil. The fourth edition of the workshop was the closing event of a Thematic Program on Incompressible Fluids Dynamics, to be held at IMPA next Spring. Hence, the focus of the workshop will be incompressible fluid mechanics .

Since Kolmogorov proposed his phenomenological theory of hydrodynamic turbulence in 1941, the description of mechanism leading to the energy cascade and anomalous scaling remains an open problem in fluid mechanics. Soon after, in 1949 Onsager noticed that the scaling properties in inertial range imply non-differentiability of the velocity field in the limit of vanishing viscosity. This observation suggests that the turbulence mechanism may be related to a finite-time singularity (blowup) of incompressible Euler equations. However, the existence of such blowup is still an open problem too. In this talk, we show that the blowup indeed represents the driving mechanism of inertial range for a simplified (shell) model of turbulence. Here, blowups generate coherent structures (instantons), which travel through the inertial range in finite time and are described by universal self-similar statistics. The anomaly (deviation of scaling exponents of velocity moments from the Kolmogorov theory) is related analytically to the process of instanton creation using the large deviation principle. The results are confirmed by numerical simulations .

There are no comments on this title.

to post a comment.
© 2023 IMPA Library | Customized & Maintained by Sérgio Pilotto


Powered by Koha